3.9 \(\int \cos ^6(c+d x) (A+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=117 \[ \frac {(8 A+7 C) \sin (c+d x) \cos ^5(c+d x)}{48 d}+\frac {5 (8 A+7 C) \sin (c+d x) \cos ^3(c+d x)}{192 d}+\frac {5 (8 A+7 C) \sin (c+d x) \cos (c+d x)}{128 d}+\frac {5}{128} x (8 A+7 C)+\frac {C \sin (c+d x) \cos ^7(c+d x)}{8 d} \]

[Out]

5/128*(8*A+7*C)*x+5/128*(8*A+7*C)*cos(d*x+c)*sin(d*x+c)/d+5/192*(8*A+7*C)*cos(d*x+c)^3*sin(d*x+c)/d+1/48*(8*A+
7*C)*cos(d*x+c)^5*sin(d*x+c)/d+1/8*C*cos(d*x+c)^7*sin(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3014, 2635, 8} \[ \frac {(8 A+7 C) \sin (c+d x) \cos ^5(c+d x)}{48 d}+\frac {5 (8 A+7 C) \sin (c+d x) \cos ^3(c+d x)}{192 d}+\frac {5 (8 A+7 C) \sin (c+d x) \cos (c+d x)}{128 d}+\frac {5}{128} x (8 A+7 C)+\frac {C \sin (c+d x) \cos ^7(c+d x)}{8 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^6*(A + C*Cos[c + d*x]^2),x]

[Out]

(5*(8*A + 7*C)*x)/128 + (5*(8*A + 7*C)*Cos[c + d*x]*Sin[c + d*x])/(128*d) + (5*(8*A + 7*C)*Cos[c + d*x]^3*Sin[
c + d*x])/(192*d) + ((8*A + 7*C)*Cos[c + d*x]^5*Sin[c + d*x])/(48*d) + (C*Cos[c + d*x]^7*Sin[c + d*x])/(8*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 3014

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[
e + f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e + f*
x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^6(c+d x) \left (A+C \cos ^2(c+d x)\right ) \, dx &=\frac {C \cos ^7(c+d x) \sin (c+d x)}{8 d}+\frac {1}{8} (8 A+7 C) \int \cos ^6(c+d x) \, dx\\ &=\frac {(8 A+7 C) \cos ^5(c+d x) \sin (c+d x)}{48 d}+\frac {C \cos ^7(c+d x) \sin (c+d x)}{8 d}+\frac {1}{48} (5 (8 A+7 C)) \int \cos ^4(c+d x) \, dx\\ &=\frac {5 (8 A+7 C) \cos ^3(c+d x) \sin (c+d x)}{192 d}+\frac {(8 A+7 C) \cos ^5(c+d x) \sin (c+d x)}{48 d}+\frac {C \cos ^7(c+d x) \sin (c+d x)}{8 d}+\frac {1}{64} (5 (8 A+7 C)) \int \cos ^2(c+d x) \, dx\\ &=\frac {5 (8 A+7 C) \cos (c+d x) \sin (c+d x)}{128 d}+\frac {5 (8 A+7 C) \cos ^3(c+d x) \sin (c+d x)}{192 d}+\frac {(8 A+7 C) \cos ^5(c+d x) \sin (c+d x)}{48 d}+\frac {C \cos ^7(c+d x) \sin (c+d x)}{8 d}+\frac {1}{128} (5 (8 A+7 C)) \int 1 \, dx\\ &=\frac {5}{128} (8 A+7 C) x+\frac {5 (8 A+7 C) \cos (c+d x) \sin (c+d x)}{128 d}+\frac {5 (8 A+7 C) \cos ^3(c+d x) \sin (c+d x)}{192 d}+\frac {(8 A+7 C) \cos ^5(c+d x) \sin (c+d x)}{48 d}+\frac {C \cos ^7(c+d x) \sin (c+d x)}{8 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 93, normalized size = 0.79 \[ \frac {48 (15 A+14 C) \sin (2 (c+d x))+24 (6 A+7 C) \sin (4 (c+d x))+16 A \sin (6 (c+d x))+960 A c+960 A d x+32 C \sin (6 (c+d x))+3 C \sin (8 (c+d x))+840 c C+840 C d x}{3072 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^6*(A + C*Cos[c + d*x]^2),x]

[Out]

(960*A*c + 840*c*C + 960*A*d*x + 840*C*d*x + 48*(15*A + 14*C)*Sin[2*(c + d*x)] + 24*(6*A + 7*C)*Sin[4*(c + d*x
)] + 16*A*Sin[6*(c + d*x)] + 32*C*Sin[6*(c + d*x)] + 3*C*Sin[8*(c + d*x)])/(3072*d)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 85, normalized size = 0.73 \[ \frac {15 \, {\left (8 \, A + 7 \, C\right )} d x + {\left (48 \, C \cos \left (d x + c\right )^{7} + 8 \, {\left (8 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{5} + 10 \, {\left (8 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{3} + 15 \, {\left (8 \, A + 7 \, C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{384 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*(A+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/384*(15*(8*A + 7*C)*d*x + (48*C*cos(d*x + c)^7 + 8*(8*A + 7*C)*cos(d*x + c)^5 + 10*(8*A + 7*C)*cos(d*x + c)^
3 + 15*(8*A + 7*C)*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.25, size = 87, normalized size = 0.74 \[ \frac {5}{128} \, {\left (8 \, A + 7 \, C\right )} x + \frac {C \sin \left (8 \, d x + 8 \, c\right )}{1024 \, d} + \frac {{\left (A + 2 \, C\right )} \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac {{\left (6 \, A + 7 \, C\right )} \sin \left (4 \, d x + 4 \, c\right )}{128 \, d} + \frac {{\left (15 \, A + 14 \, C\right )} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*(A+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

5/128*(8*A + 7*C)*x + 1/1024*C*sin(8*d*x + 8*c)/d + 1/192*(A + 2*C)*sin(6*d*x + 6*c)/d + 1/128*(6*A + 7*C)*sin
(4*d*x + 4*c)/d + 1/64*(15*A + 14*C)*sin(2*d*x + 2*c)/d

________________________________________________________________________________________

maple [A]  time = 0.05, size = 106, normalized size = 0.91 \[ \frac {C \left (\frac {\left (\cos ^{7}\left (d x +c \right )+\frac {7 \left (\cos ^{5}\left (d x +c \right )\right )}{6}+\frac {35 \left (\cos ^{3}\left (d x +c \right )\right )}{24}+\frac {35 \cos \left (d x +c \right )}{16}\right ) \sin \left (d x +c \right )}{8}+\frac {35 d x}{128}+\frac {35 c}{128}\right )+A \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6*(A+C*cos(d*x+c)^2),x)

[Out]

1/d*(C*(1/8*(cos(d*x+c)^7+7/6*cos(d*x+c)^5+35/24*cos(d*x+c)^3+35/16*cos(d*x+c))*sin(d*x+c)+35/128*d*x+35/128*c
)+A*(1/6*(cos(d*x+c)^5+5/4*cos(d*x+c)^3+15/8*cos(d*x+c))*sin(d*x+c)+5/16*d*x+5/16*c))

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 130, normalized size = 1.11 \[ \frac {15 \, {\left (d x + c\right )} {\left (8 \, A + 7 \, C\right )} + \frac {15 \, {\left (8 \, A + 7 \, C\right )} \tan \left (d x + c\right )^{7} + 55 \, {\left (8 \, A + 7 \, C\right )} \tan \left (d x + c\right )^{5} + 73 \, {\left (8 \, A + 7 \, C\right )} \tan \left (d x + c\right )^{3} + 3 \, {\left (88 \, A + 93 \, C\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{8} + 4 \, \tan \left (d x + c\right )^{6} + 6 \, \tan \left (d x + c\right )^{4} + 4 \, \tan \left (d x + c\right )^{2} + 1}}{384 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*(A+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

1/384*(15*(d*x + c)*(8*A + 7*C) + (15*(8*A + 7*C)*tan(d*x + c)^7 + 55*(8*A + 7*C)*tan(d*x + c)^5 + 73*(8*A + 7
*C)*tan(d*x + c)^3 + 3*(88*A + 93*C)*tan(d*x + c))/(tan(d*x + c)^8 + 4*tan(d*x + c)^6 + 6*tan(d*x + c)^4 + 4*t
an(d*x + c)^2 + 1))/d

________________________________________________________________________________________

mupad [B]  time = 2.11, size = 119, normalized size = 1.02 \[ x\,\left (\frac {5\,A}{16}+\frac {35\,C}{128}\right )+\frac {\left (\frac {5\,A}{16}+\frac {35\,C}{128}\right )\,{\mathrm {tan}\left (c+d\,x\right )}^7+\left (\frac {55\,A}{48}+\frac {385\,C}{384}\right )\,{\mathrm {tan}\left (c+d\,x\right )}^5+\left (\frac {73\,A}{48}+\frac {511\,C}{384}\right )\,{\mathrm {tan}\left (c+d\,x\right )}^3+\left (\frac {11\,A}{16}+\frac {93\,C}{128}\right )\,\mathrm {tan}\left (c+d\,x\right )}{d\,\left ({\mathrm {tan}\left (c+d\,x\right )}^8+4\,{\mathrm {tan}\left (c+d\,x\right )}^6+6\,{\mathrm {tan}\left (c+d\,x\right )}^4+4\,{\mathrm {tan}\left (c+d\,x\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^6*(A + C*cos(c + d*x)^2),x)

[Out]

x*((5*A)/16 + (35*C)/128) + (tan(c + d*x)*((11*A)/16 + (93*C)/128) + tan(c + d*x)^7*((5*A)/16 + (35*C)/128) +
tan(c + d*x)^5*((55*A)/48 + (385*C)/384) + tan(c + d*x)^3*((73*A)/48 + (511*C)/384))/(d*(4*tan(c + d*x)^2 + 6*
tan(c + d*x)^4 + 4*tan(c + d*x)^6 + tan(c + d*x)^8 + 1))

________________________________________________________________________________________

sympy [A]  time = 9.53, size = 354, normalized size = 3.03 \[ \begin {cases} \frac {5 A x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {15 A x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {15 A x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {5 A x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {5 A \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {5 A \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {11 A \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} + \frac {35 C x \sin ^{8}{\left (c + d x \right )}}{128} + \frac {35 C x \sin ^{6}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{32} + \frac {105 C x \sin ^{4}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{64} + \frac {35 C x \sin ^{2}{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{32} + \frac {35 C x \cos ^{8}{\left (c + d x \right )}}{128} + \frac {35 C \sin ^{7}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{128 d} + \frac {385 C \sin ^{5}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{384 d} + \frac {511 C \sin ^{3}{\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{384 d} + \frac {93 C \sin {\left (c + d x \right )} \cos ^{7}{\left (c + d x \right )}}{128 d} & \text {for}\: d \neq 0 \\x \left (A + C \cos ^{2}{\relax (c )}\right ) \cos ^{6}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6*(A+C*cos(d*x+c)**2),x)

[Out]

Piecewise((5*A*x*sin(c + d*x)**6/16 + 15*A*x*sin(c + d*x)**4*cos(c + d*x)**2/16 + 15*A*x*sin(c + d*x)**2*cos(c
 + d*x)**4/16 + 5*A*x*cos(c + d*x)**6/16 + 5*A*sin(c + d*x)**5*cos(c + d*x)/(16*d) + 5*A*sin(c + d*x)**3*cos(c
 + d*x)**3/(6*d) + 11*A*sin(c + d*x)*cos(c + d*x)**5/(16*d) + 35*C*x*sin(c + d*x)**8/128 + 35*C*x*sin(c + d*x)
**6*cos(c + d*x)**2/32 + 105*C*x*sin(c + d*x)**4*cos(c + d*x)**4/64 + 35*C*x*sin(c + d*x)**2*cos(c + d*x)**6/3
2 + 35*C*x*cos(c + d*x)**8/128 + 35*C*sin(c + d*x)**7*cos(c + d*x)/(128*d) + 385*C*sin(c + d*x)**5*cos(c + d*x
)**3/(384*d) + 511*C*sin(c + d*x)**3*cos(c + d*x)**5/(384*d) + 93*C*sin(c + d*x)*cos(c + d*x)**7/(128*d), Ne(d
, 0)), (x*(A + C*cos(c)**2)*cos(c)**6, True))

________________________________________________________________________________________